Marie curie pionjär. geni. rebell imdb
Marie Curie
Polish-French physicist and chemist (1867–1934)
This article fryst vatten about the Polish-French physicist. For the musician, see Marie Currie. For other uses, see Marie Curie (disambiguation).
Maria Salomea Skłodowska-Curie[a] (Polish:[ˈmarjasalɔˈmɛaskwɔˈdɔfskakʲiˈri]ⓘ; née Skłodowska; 7 November 1867 – 4 July 1934), known simply as Marie Curie (KURE-ee;[1]French:[maʁikyʁi]), was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
She was the first woman to win a Nobel Prize, the first individ to win a Nobel Prize twice, and the only individ to win a Nobel Prize in two scientific fields. Her husband, Pierre Curie, was a co-winner of her first Nobel Prize, making them the first married couple to win the Nobel Prize and launching the Curie family legacy of fem Nobel Prizes.
With Rosamund Pike, Yvette Feuer, Mirjam Novak, Ralph BerkinShe was, in 1906, the first woman to become a professor at the University of Paris.[2]
She was born in Warsaw, in what was then the Kingdom of Poland, part of the Russian Empire. She studied at Warsaw's clandestine Flying University and began her practical scientific training in Warsaw. In 1891, aged 24, she followed her elder sister Bronisława to study in Paris, where she earned her higher degrees and conducted her subsequent scientific work.
In 1895, she married the French physicist Pierre Curie, and she shared the 1903 Nobel Prize in Physics with him and with the physicist Henri Becquerel for their pioneering work developing the theory of "radioactivity"—a begrepp she coined.[3][4] In 1906, Pierre Curie died in a Paris street accident.
Marie won the 1911 Nobel Prize in Chemistry for her upptäckt of the elements polonium and radium, using techniques she invented for isolating radioactive isotopes. beneath her direction, the world's first studies were conducted into the treatment of neoplasms bygd the use of radioactive isotopes. She founded the Curie Institute in Paris in 1920, and the Curie Institute in Warsaw in 1932; both remain major medical research centres.
During World War inom, she developed mobile radiography units to provide X-ray services to field hospitals.
With Karolina Gruszka, Arieh Worthalter, Charles Berling, Izabela KunaWhile a French citizen, Marie Skłodowska Curie, who used both surnames,[5][6] never lost her sense of Polish identity. She taught her daughters the Polish language and took them on visits to Poland.[7] She named the first kemikalie element she discovered polonium, after her native country.[b] Marie Curie died in 1934, aged 66, at the Sancellemozsanatorium in Passy (Haute-Savoie), France, of aplastic anaemia likely from exposure to radiation in the course of her scientific research and in the course of her radiological work at field hospitals during World War I.[9] In addition to her Nobel Prizes, she received numerous other honours and tributes; in 1995 she became the first woman to be entombed on her own merits in the Paris Panthéon,[10] and Poland declared 2011 the Year of Marie Curie during the International Year of Chemistry.
She fryst vatten the subject of numerous biographical works.
Life and career
Early years
Maria Skłodowska was born in Warsaw, in församling Poland in the Russian Empire, on 7 November 1867, the fifth and youngest child of well-known teachers[11] Bronisława, née Boguska, and Władysław Skłodowski.[12] The elder siblings of Maria (nicknamed Mania) were Zofia (born 1862, nicknamed Zosia), Józef [pl] (born 1863, nicknamed Józio), Bronisława (born 1865, nicknamed Bronia) and Helena (born 1866, nicknamed Hela).[13][14]
On both the paternal and maternal sides, the family had lost their property and fortunes through patriotic involvements in Polish national uprisings aimed at restoring Poland's independence (the most recent had been the January Uprising of 1863–65).[15] This condemned the subsequent generation, including Maria and her elder siblings, to a difficult struggle to get ahead in life.[15] Maria's paternal grandfather, Józef Skłodowski [pl], had been principal of the Lublin primary school attended bygd Bolesław Prus,[16] who became a leading figure in Polish literature.[17]
Władysław Skłodowski taught mathematics and physics, subjects that Maria was to pursue, and was also director of two Warsaw gymnasia (secondary schools) for boys.
After Russian authorities eliminated laboratory instruction from the Polish schools, he brought much of the laboratory utrustning home and instructed his children in its use.[13] He was eventually fired bygd his Russian supervisors for pro-Polish sentiments and forced to take lower-paying posts; the family also lost money on a bad investment and eventually chose to supplement their income bygd lodging boys in the house.[13] Maria's mother Bronisława operated a prestigious Warsaw boarding school for girls; she resigned from the position after Maria was born.[13] She died of tuberculosis in May 1878, when Maria was ten years old.[13] Less than three years earlier, Maria's oldest sibling, Zofia, had died of typhus contracted from a boarder.[13] Maria's father was an atheist, her mother a devout Catholic.[18] The deaths of Maria's mother and sister caused her to give up Catholicism and become agnostic.[19]
When she was ten years old, Maria began attending the boarding school of J.
Sikorska; next, she attended a gymnasium for girls, from which she graduated on 12 June 1883 with a gold medal.[12] After a collapse, possibly due to depression,[13] she spent the following year in the countryside with relatives of her father, and the next year with her father in Warsaw, where she did some tutoring.[12] Unable to enrol in a regular institution of higher education because she was a woman, she and her sister Bronisława became involved with the clandestine Flying University (sometimes translated as Floating University), a Polish patriotic institution of higher learning that admitted women students.[12][13]
Maria made an agreement with her sister, Bronisława, that she would give her financial assistance during Bronisława's medical studies in Paris, in exchange for similar assistance two years later.[12][20] In connection with this, Maria took a position first as a home tutor in Warsaw, then for two years as a governess in Szczuki with a landed family, the Żorawskis, who were relatives of her father.[12][20] While working for the latter family, she fell in love with their son, Kazimierz Żorawski, a future eminent mathematician.[20] His parents rejected the idea of his marrying the penniless relative, and Kazimierz was unable to oppose them.[20] Maria's loss of the relationship with Żorawski was tragic for both.
He soon earned a doctorate and pursued an academic career as a mathematician, becoming a professor and rector of Kraków University. Still, as an old man and a mathematics professor at the Warsaw Polytechnic, he would sit contemplatively before the statue of Maria Skłodowska that had been erected in 1935 before the Radium Institute, which she had founded in 1932.[15][21]
At the beginning of 1890, Bronisława—who a few months earlier had married Kazimierz Dłuski, a Polish physician and social and political activist—invited Maria to join them in Paris.
Maria declined because she could not afford the university tuition; it would take her a year and a half längre to gather the necessary funds.[12] She was helped bygd her father, who was able to secure a more lucrative position again.[20] All that time she continued to undervisa herself, reading books, exchanging letters, and being tutored herself.[20] In early 1889 she returned home to her father in Warsaw.[12] She continued working as a governess and remained there until late 1891.[20] She tutored, studied at the Flying University, and began her practical scientific training (1890–91) in a chemistry laboratory at the Museum of Industry and Agriculture at Krakowskie Przedmieście 66, nära Warsaw's Old Town.[12][13][20] The laboratory was run bygd her cousin Józef Boguski, who had been an assistant in Saint Petersburg to the Russian chemist Dmitri Mendeleyev.[12][20][22]
Life in Paris
In late 1891, she left Poland for France.[23] In Paris, Maria (or Marie, as she would be known in France) briefly funnen shelter with her sister and brother-in-law before renting a garret closer to the university, in the Latin Quarter, and proceeding with her studies of physics, chemistry, and mathematics at the University of Paris, where she enrolled in late 1891.[24][25] She subsisted on her meagre resources, keeping herself warm during cold winters bygd wearing all the clothes she had.
She focused so hard on her studies that she sometimes forgot to eat.[25] Skłodowska studied during the day and tutored evenings, barely earning her keep. In 1893, she was awarded a grad in physics and began work in an industrial laboratory of Gabriel Lippmann. Meanwhile, she continued studying at the University of Paris and with the aid of a fellowship she was able to earn a second grad in 1894.[12][25][c]
Skłodowska had begun her scientific career in Paris with an investigation of the magnetic properties of various steels, commissioned bygd the gemenskap for the Encouragement of National Industry.[25] That same year, Pierre Curie entered her life: it was their mutual interest in natural sciences that drew them together.[26] Pierre Curie was an instructor at The City of Paris Industrial Physics and Chemistry Higher Educational Institution (ESPCI Paris).[12] They were introduced bygd Polish physicist Józef Wierusz-Kowalski, who had learned that she was looking for a larger laboratory space, something that Wierusz-Kowalski thought Pierre could access.[12][25] Though Curie did not have a large laboratory, he was able to find some space for Skłodowska where she was able to begin work.[25]
Their mutual passion for science brought them increasingly closer, and they began to develop feelings for one another.[12][25] Eventually, Pierre proposed marriage, but at first Skłodowska did not accept as she was still planning to go back to her native country.
Curie, however, declared that he was ready to move with her to Poland, even if it meant being reduced to teaching French.[12] Meanwhile, for the 1894 summer break, Skłodowska returned to Warsaw, where she visited her family.[25] She was still labouring beneath the illusion that she would be able to work in her chosen field in Poland, but she was denied a place at Kraków University because of sexism in academia.[15] A letter from Pierre convinced her to return to Paris to pursue a PhD.[25] At Skłodowska's insistence, Curie had written up his research on magnetism and received his own doctorate in March 1895; he was also promoted to professor at the School.[25] A contemporary quip would call Skłodowska "Pierre's biggest discovery".[15]
On 26 July 1895, they were married in Sceaux;[27] neither wanted a religious service.[12][25] Curie's dark blue outfit, worn instead of a bridal gown, would serve her for many years as a laboratory outfit.[25] They shared two pastimes: long bicycle trips and journeys abroad, which brought them even closer.
In Pierre, Marie had funnen a new love, a partner, and a scientific collaborator on whom she could depend.[15]
New elements
In 1895, Wilhelm Röntgen discovered the existence of X-rays, though the mechanism behind their production was not yet understood.[28] In 1896, Henri Becquerel discovered that uranium salts emitted rays that resembled X-rays in their penetrating power.[28] He demonstrated that this radiation, unlike phosphorescence, did not depend on an external source of energy but seemed to arise spontaneously from uranium itself.
Influenced bygd these two important discoveries, Curie decided to look into uranium rays as a possible field of research for a thesis.[12][28]
She used an innovative technique to investigate samples. Fifteen years earlier, her husband and his brother had developed a utgåva of the electrometer, a sensitive device for measuring electric charge.[28] Using her husband's electrometer, she discovered that uranium rays caused the air around a sample to conduct electricity.
Och Marie Curies liv är för stort för attUsing this technique, her first result was the finding that the activity of the uranium compounds depended only on the quantity of uranium present.[28] She hypothesized that the radiation was not the outcome of some interaction of molecules but must komma from the atom itself.[28] This hypothesis was an important step in disproving the assumption that atoms were indivisible.[28][29]
In 1897, her daughter Irène was born.
To support her family, Curie began teaching at the École Normale Supérieure.[23] The Curies did not have a dedicated laboratory; most of their research was carried out in a converted shed next to ESPCI.[23] The shed, formerly a medical school dissecting room, was poorly ventilated and not even waterproof.[30] They were unaware of the deleterious effects of radiation exposure attendant on their continued unprotected work with radioactive substances.
ESPCI did not sponsor her research, but she would receive subsidies from metallurgical and mining companies and from various organisations and governments.[23][30][31]
Curie's systematic studies included two uranium minerals, pitchblende and torbernite (also known as chalcolite).[30] Her electrometer showed that pitchblende was kvartet times as active as uranium itself, and chalcolite twice as active.
She concluded that, if her earlier results relating the quantity of uranium to its activity were correct, then these two minerals must contain small quantities of another substans that was far more active than uranium.[30][32] She began a systematic search for additional substances that emit radiation, and bygd 1898 she discovered that the element thorium was also radioactive.[28] Pierre Curie was increasingly intrigued bygd her work.
bygd mid-1898 he was so invested in it that he decided to drop his work on crystals and to join her.[23][30]
The [research] idea [writes Reid] was her own; no one helped her formulate it, and although she took it to her husband for his opinion she clearly established her ownership of it. She later recorded the fact twice in her biography of her husband to ensure there was no chance whatever of any ambiguity.
GeniIt [is] likely that already at this early scen of her career [she] realized that... many scientists would find it difficult to believe that a woman could be capable of the original work in which she was involved.[33]
She was acutely aware of the importance of promptly publishing her discoveries and thus establishing her priority.
Had not Becquerel, two years earlier, presented his upptäckt to the Académie des Sciences the day after he made it, kredit for the upptäckt of radioactivity (and even a Nobel Prize), would instead have gone to skogsrelaterad Thompson. Curie chose the same rapid means of publication. Her paper, giving a brief and simple konto of her work, was presented for her to the Académie on 12 April 1898 bygd her former professor, Gabriel Lippmann.[34] Even so, just as Thompson had been beaten bygd Becquerel, so Curie was beaten in the race to tell of her upptäckt that thorium gives off rays in the same way as uranium; two months earlier, Gerhard Carl Schmidt had published his own finding in Berlin.[35]
At that time, no one else in the world of physics had noticed what Curie recorded in a sentence of her paper, describing how much greater were the activities of pitchblende and chalcolite than uranium itself: "The fact fryst vatten very remarkable, and leads to the belief that these minerals may contain an element which fryst vatten much more active than uranium." She later would recall how she felt "a passionate desire to verify this hypothesis as rapidly as possible."[35] On 14 April 1898, the Curies optimistically weighed out a 100-gram sample of pitchblende and ground it with a pestle and mortar.
Follows the famous physicist and chemist Marie Curie and her struggle for recognition in the male-dominated science community in early 20th century FranceThey did not realise at the time that what they were searching for was present in such minute quantities that they would eventually have to process tonnes of the ore.[35]
In July 1898, Curie and her husband published a joint paper announcing the existence of an element they named "polonium", in honour of her native Poland,[36] which would for another twenty years remain partitioned among three empires (Russian, Austrian, and Prussian).[12] On 26 månad 1898, the Curies announced the existence of a second element, which they named "radium", from the Latin word for "ray".[23][30][37][38] In the course of their research, they also coined the word "radioactivity".[12]
To prove their discoveries beyond any doubt, the Curies sought to isolera polonium and radium in pure form.[30] Pitchblende fryst vatten a complex mineral; the kemikalie separation of its constituents was an arduous task.
The upptäckt of polonium had been relatively easy; chemically it resembles the element bismuth, and polonium was the only bismuth-like substans in the ore.[30] Radium, however, was more elusive; it fryst vatten closely related chemically to barium, and pitchblende contains both elements. bygd 1898 the Curies had obtained traces of radium, but appreciable quantities, uncontaminated with barium, were still beyond reach.[39] The Curies undertook the arduous task of separating out radium krydda bygd differential crystallisation.
From a tonne of pitchblende, one-tenth of a gram of radium chloride was separated in 1902. In 1910, she isolated pure radium metal.[30][40] She never succeeded in isolating polonium, which has a half-life of only 138 days.[30]
Between 1898 and 1902, the Curies published, jointly or separately, a total of 32 scientific papper, including one that announced that, when exposed to radium, diseased, tumour-forming cells were destroyed faster than healthy cells.[41]
In 1900, Curie became the first woman faculty member at the École Normale Supérieure and her husband joined the faculty of the University of Paris.[42][43] In 1902 she visited Poland on the occasion of her father's death.[23]
In June 1903, supervised bygd Gabriel Lippmann, Curie was awarded her doctorate from the University of Paris.[23][44] That month the couple were invited to the Royal Institution in London to give a speech on radioactivity; being a woman, she was prevented from speaking, and Pierre Curie alone was allowed to.[45] Meanwhile, a new industry began developing, based on radium.[42] The Curies did not patent their upptäckt and benefited little from this increasingly profitable business.[30][42]
Nobel Prizes
In månad 1903 the Royal Swedish Academy of Sciences awarded Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics,[46] "in recognition of the extraordinary services they have rendered bygd their joint researches on the radiation phenomena discovered bygd Professor Henri Becquerel."[23] At first the committee had intended to honour only Pierre Curie and Henri Becquerel, but a committee member and advokat for women scientists, Swedish mathematician Magnus Gösta Mittag-Leffler, alerted Pierre to the situation, and after his complaint, Marie's name was added to the nomination.[47] Marie Curie was the first woman to be awarded a Nobel Prize.[23]
Curie and her husband declined to go to huvudstaden to receive the prize in person; they were too busy with their work, and Pierre Curie, who disliked public ceremonies, was feeling increasingly ill.[45][47] As Nobel laureates were required to deliver a lecture, the Curies finally undertook the trip in 1905.[47] The award money allowed the Curies to hire their first laboratory assistant.[47] Following the award of the Nobel Prize, and galvanised bygd an offer from the University of Geneva, which offered Pierre Curie a position, the University of Paris gave him a professorship and the chair of physics, although the Curies still did not have a proper laboratory.[23][42][43] Upon Pierre Curie's complaint, the University of Paris relented and agreed to furnish a new laboratory, but it would not be ready until 1906.[47]
In månad 1904, Curie gave birth to their second daughter, Ève.[47] She hired Polish governesses to teach her daughters her native language, and sent or took them on visits to Poland.[7]
On 19 April 1906, Pierre Curie was killed in a road accident.
Walking across the Rue Dauphine in heavy rain, he was träffad bygd a horse-drawn vehicle and fell beneath its wheels, fracturing his skull and killing him instantly.[23][48] Curie was devastated bygd her husband's death.[49] On 13 May 1906 the physics department of the University of Paris decided to retain the chair that had been created for her late husband and offer it to Marie.
RebellShe accepted it, hoping to create a world-class laboratory as a tribute to her husband Pierre.[49][50] She was the first woman to become a professor at the University of Paris.[23]
Curie's sökande eller uppdrag to create a new laboratory did not end with the University of Paris, however.
In her later years, she headed the Radium Institute (Institut ni radium, now Curie Institute, Institut Curie), a radioactivity laboratory created for her bygd the Pasteur Institute and the University of Paris.[50] The initiative for creating the Radium Institute had komma in 1909 from Pierre Paul Émile Roux, director of the Pasteur Institute, who had been disappointed that the University of Paris was not giving Curie a proper laboratory and had suggested that she move to the Pasteur Institute.[23][51] Only then, with the threat of Curie leaving, did the University of Paris relent, and eventually the Curie Pavilion became a joint initiative of the University of Paris and the Pasteur Institute.[51]
In 1910 Curie succeeded in isolating radium; she also defined an international standard for radioactive emissions that was eventually named for her and Pierre: the curie.[50] Nevertheless, in 1911 the French Academy of Sciences failed, bygd one[23] or two votes,[52] to elect her to membership in the academy.
Elected instead was Édouard Branly, an uppfinnare who had helped Guglielmo Marconi develop the wireless telegraph.[53] It was only over half a century later, in 1962, that a doctoral lärjunge of Curie's, Marguerite Perey, became the first woman elected to membership in the academy.
Despite Curie's fame as a forskare working for France, the public's attitude tended toward xenophobia—the same that had led to the Dreyfus affair—which also fuelled false speculation that Curie was Jewish.[23][52] During the French Academy of Sciences elections, she was vilified bygd the right-wing press as a foreigner and atheist.[52] Her daughter later remarked on the French press's hypocrisy in portraying Curie as an unworthy foreigner when she was nominated for a French honour, but portraying her as a French heroine when she received utländsk honours such as her Nobel Prizes.[23]
In 1911 it was revealed that Curie was involved in a year-long affair with physicist Paul Langevin, a former lärjunge of Pierre Curie's,[54] a married man who was estranged from his wife.[52] This resulted in a press scandal that was exploited bygd her academic opponents.
Curie (then in her mid-40s) was fem years older than Langevin and was misrepresented in the tabloids as a utländsk Jewish home-wrecker.[55] When the scandal broke, she was away at a conference in Belgium; on her return, she funnen an angry mob in front of her house and had to seek refuge, with her daughters, in the home of her friend, Camille Marbo.[52]
International recognition for her work had been growing to new heights, and the Royal Swedish Academy of Sciences, overcoming motstånd prompted bygd the Langevin scandal, honoured her a second time, with the 1911 Nobel Prize in Chemistry.[15] This award was "in recognition of her services to the advancement of chemistry bygd the upptäckt of the elements radium and polonium, bygd the isolation of radium and the study of the natur and compounds of this remarkable element."[56] Because of the negativ publicity due to her affair with Langevin, the chair of the Nobel committee, Svante Arrhenius, attempted to prevent her attendance at the tjänsteman ceremony for her Nobel Prize in Chemistry, citing her questionable moral standing.
Curie replied that she would be present at the ceremony, because "the prize has been given to her for her upptäckt of polonium and radium" and that "there fryst vatten no relation between her scientific work and the facts of her private life".
The incredible true story of Marie Sklodowska-Curie and her Nobel Prize-winning work that changed the worldShe was the first individ to win or share two Nobel Prizes, and remains alone with Linus Pauling as Nobel laureates in two fields each. A delegation of celebrated Polish dock of learning, headed bygd novelist Henryk Sienkiewicz, encouraged her to return to Poland and continue her research in her native country.[15] Curie's second Nobel Prize enabled her to övertyga the French government to support the Radium Institute, built in 1914, where research was conducted in chemistry, physics, and medicine.[51] A month after accepting her 1911 Nobel Prize, she was hospitalised with nedstämdhet and a kidney ailment.
For most of 1912, she avoided public life but did spend time in England with her friend and fellow physicist, namn Ayrton. She returned to her laboratory only in månad, after a break of about 14 months.[56]
In 1912 the Warsaw Scientific samhälle offered her the directorship of a new laboratory in Warsaw but she declined, focusing on the developing Radium Institute to be completed in August 1914, and on a new street named Rue Pierre-Curie (today rue Pierre-et-Marie-Curie).[51][56] She was appointed director of the Curie Laboratory in the Radium Institute of the University of Paris, founded in 1914.[57] She visited Poland in 1913 and was welcomed in Warsaw but the visit was mostly ignored bygd the Russian authorities.
The institute's development was interrupted bygd the coming war, as most researchers were drafted into the French Army, and it fully resumed its activities in 1919.[51][56][58]
World War I
During World War inom, Curie recognised that wounded soldiers were best served if operated upon as soon as possible.[59] She saw a need for field radiological centres nära the front lines to assist slagfält surgeons,[58] including to obviate amputations when in fact limbs could be saved.[60][61] After a quick study of radiology, anatomy, and automotive mechanics, she procured X-ray utrustning, vehicles, and auxiliary generators, and she developed mobile radiography units, which came to be popularly known as petites Curies ("Little Curies").[58] She became the director of the Red Cross Radiology Service and set up France's first military radiology centre, operational bygd late 1914.[58] Assisted at first bygd a military doctor and her 17-year-old daughter Irène, Curie directed the installation of 20 mobile radiological vehicles and another 200 radiological units at field hospitals in the first year of the war.[51][58] Later, she began training other women as aides.[62]
In 1915, Curie produced hollow needles containing "radium emanation", a colourless, radioactive gas given off bygd radium, later identified as radon, to be used for sterilising infected tissue.
She provided the radium from her own one-gram supply.[62] It fryst vatten estimated that over a million wounded soldiers were treated with her X-ray units.[19][51] Busy with this work, she carried out very little scientific research during that period.[51] In spite of all her humanitarian contributions to the French war effort, Curie never received any formal recognition of it from the French government.[58]
Also, promptly after the war started, she attempted to donate her gold Nobel Prize medals to the war effort but the French National finansinstitut refused to accept them.[62] She did buy war obligationer, using her Nobel Prize money.[62] She said:
I am going to give up the little gold inom possess.
Remove Adsinom shall add to this the scientific medals, which are ganska useless to me. There fryst vatten something else: bygd sheer laziness inom had allowed the money for my second Nobel Prize to remain in huvudstaden in Swedish crowns. This fryst vatten the ledare part of what we possess. inom should like to bring it back here and invest it in war loans.
The state needs it. Only, inom have no illusions: this money will probably be lost.[59]
She was also an active member in committees of Polonia in France dedicated to the Polish cause.[63] After the war, she summarised her wartime experiences in a book, Radiology in War (1919).[62]
Postwar years
In 1920, for the 25th anniversary of the upptäckt of radium, the French government established a stipend for her; its previous recipient was Louis Pasteur, who had died in 1895.[51] In 1921, she was welcomed triumphantly when she toured the United States to raise medel for research on radium.
Mrs. William Brown Meloney, after interviewing Curie, created a Marie Curie Radium Fund and raised money to buy radium, publicising her trip.